Specialization Area
Information Systems

Databases and Information Systems Lab
(Prof. Härder & Prof. Michel)

Heterogeneous Information Systems Lab
(Prof. Deßloch)
What are Information Systems?
Our Foundations Course: (Advanced) Database Systems

Concurrency Control, Recovery, and Buffer Management

\[T_1 \quad T_2 \quad \ldots \quad T_n \]

Transaction Manager (TM)

Scheduler

Data Manager (DM)

Recovery Manager

Buffer Manager

Database

Query Rewriting/Unnesting/Optimization

\[
\begin{align*}
\text{SELECT DISTINCT} & \quad \text{C.cname, (SELECT count(*)}) \\
\text{FROM} & \quad \text{Product P} \\
\text{WHERE} & \quad \text{P.cid = C.cid)}
\end{align*}
\]

FROM Company C

Probabilistic Databases

<table>
<thead>
<tr>
<th>Name</th>
<th>Bird</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>Bird-1</td>
<td>{Finch: 0.8, Toucan: 0.2}</td>
</tr>
<tr>
<td>Susan</td>
<td>Bird-2</td>
<td>{Nightingale: 0.65, Toucan: 0.35}</td>
</tr>
<tr>
<td>Paul</td>
<td>Bird-3</td>
<td>{Kookaburra: 0.55, Toucan: 0.45}</td>
</tr>
</tbody>
</table>

Multidimensional and Metric Data Structures

Join Order Optimization

<table>
<thead>
<tr>
<th>Join Order</th>
<th>(C_{out})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_1 \times R_2)</td>
<td>2</td>
</tr>
<tr>
<td>(R_2 \times R_3)</td>
<td>200</td>
</tr>
<tr>
<td>(R_3 \times R_4)</td>
<td>2</td>
</tr>
<tr>
<td>(((R_1 \times R_2) \times R_3) \times R_4)</td>
<td>24</td>
</tr>
<tr>
<td>(((R_2 \times R_3) \times R_1) \times R_4)</td>
<td>222</td>
</tr>
<tr>
<td>((R_1 \times R_2) \times (R_3 \times R_4))</td>
<td>6</td>
</tr>
</tbody>
</table>
The Big Data Era: A few Numbers ...

Data Volume

• Google: 15 000 PB (=15 Exabytes)
• Facebook: 300 PB
• Ebay: 90 PB
• Spotify: 10 PB

Data Processed per Day

• Google: 100 PB
• Ebay: 100 PB
• NSA: 29 PB
• Facebook: 600 TB
• Twitter: 100 TB
• Spotify: 2,2 TB

MB = 10^6 Byte
GB = 10^9 Byte
TB (Terabyte) = 10^{12} Bytes
PB (Petabyte) = 10^{15} Bytes
EB (Exabyte) = 10^{18} Bytes
Example: Critical Data Volume

• Assume we have **10 TB data stored on our hard disk**.

• **Now we want to analyze this data!**

• Using a hard disk having **100MB/s read rate, solely reading takes**
 • 100000 seconds, or
 • 1666 minutes, or
 • 27 hours
Google in 1998 vs. Today

http://flickr.com/photos/jurvetson/157722937/

http://www.google.com/about/datacenters/inside/index.html
Assume a disk fails once per year and we have n disks. What is the probability that at least one fails today?

- $n=1$: 0.0027
- $N=100$: 0.239
- $N=1000$: 0.9356
- $N=10000$: ~ 1.0
Course Distributed Data Management (NoSQL / Cloud / Big Data)

Map \((k1,v1) \rightarrow \text{list}(k2,v2)\)

Reduce \((k2, \text{list}(v2)) \rightarrow \text{list}(k3, v3)\)

MapReduce

Spark

Data Placement via Consistent Hashing

Time Stamps and Vector Clocks

CAP Theorem

WARS Model and Consistency Levels

Distributed Consensus (PAXOS)

(Lease Lamport)
Course Information Retrieval and Data Mining

Relevance Assessment

PageRank

Decision Trees

Vector Space Model

\[\text{sim}(q, d) = \frac{q \cdot d}{\|q\| \|d\|} = \frac{\sum_{i=1}^{\|V\|} q_i d_i}{\sqrt{\sum_{i=1}^{\|V\|} q_i^2} \sqrt{\sum_{i=1}^{\|V\|} d_i^2}} = \frac{q \cdot d}{\|q\| \|d\|} \]

Edit Distance

Clustering
Course Middleware

Message-oriented Middleware / Asynchronous

Data Integration

Transaction Processing Application Architecture

<bib>
 <book title="a"
 <author name="x"/>
 <author name="y"/>
 </book>
 <book title="b">
 <author name="x"/>
 <author name="y"/>
 </book>
</bib>
Course Recent Developments for Data Models

Data Analysis via (Multidimensional) Data Cubes

User-defined Functions and Stored Procedures

CREATE FUNCTION distance
(loc1 VARCHAR(50),
loc2 VARCHAR(50))
RETURNS INTEGER ...;

Window Queries

Temporal Data Models

<table>
<thead>
<tr>
<th>ENo</th>
<th>EDept</th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>22217</td>
<td>3</td>
<td>d01</td>
<td>d04</td>
</tr>
<tr>
<td>22217</td>
<td>4</td>
<td>d05</td>
<td>d07</td>
</tr>
<tr>
<td>22217</td>
<td>3</td>
<td>d08</td>
<td>d012</td>
</tr>
</tbody>
</table>
Projects, Seminars, Theses

• **DB Project (every summer)**
 - Creation of a DB, development of an application, ORDBS (user-defined functions, stored procedures), **application development for data warehousing/OLAP**

• **IS Project (every winter)**
 - Implementation of a **web search engine**: multi-threaded web crawler, indexing of HTML pages, search (CLI and HTML UI), ranking models, link analysis (PageRank), image search, ad placement, duplicate detection,

• **Seminar**
 - Offered every semester
 - Topics depend on novel, interesting publications in our field or are centered around a specific topic, like modern hardware or Big Data.

• **Theses Offers**
 - Wide variety along the contents of the specialized courses. Pick your interests during the courses and get in contact with us!
<table>
<thead>
<tr>
<th>Projects</th>
<th>Lectures</th>
<th>Seminar, 4CP, (every semester)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB Schema Design and Programming</td>
<td>Middleware for Heterogen. and Distributed IS</td>
<td>Building a Web Search Engine</td>
</tr>
<tr>
<td>8 CP (every summer)</td>
<td>8CP (every winter)</td>
<td>8 CP (every winter)</td>
</tr>
<tr>
<td>Building a Web Search Engine</td>
<td>Distributed Data Management</td>
<td>(every other summer, next '21)</td>
</tr>
<tr>
<td>8 CP (every winter)</td>
<td>Information Retrieval and Data Mining</td>
<td>4CP (every other summer, next '21)</td>
</tr>
<tr>
<td>(every summer)</td>
<td>4CP (every other summer, next '20)</td>
<td>(every other summer, next '21)</td>
</tr>
<tr>
<td>Database Systems</td>
<td>Database Systems</td>
<td>(every winter)</td>
</tr>
<tr>
<td>8CP (every winter)</td>
<td>8CP (every winter)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(every other summer)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(every semester)</td>
<td></td>
</tr>
</tbody>
</table>

mandatory
Databases and Information Systems Lab
Prof. Michel
https://dbis.cs.uni-kl.de/

Heterogeneous Information Systems Lab
Prof. Deßloch
http://www.lgis.cs.uni-kl.de/

Next Courses

Winter 19/20 Database Systems, Middleware, Seminar
Summer 20 Recent Developments, Schema Design Project, Seminar
Winter 20/21 Database Systems, Middleware, Search Engine Project, Seminar
Summer 21 Distributed Data Management, Information Retrieval and Data Mining, Schema Design Project, Seminar